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Optimization-Based Collision Avoidance
Xiaojing Zhang , Alexander Liniger , and Francesco Borrelli

Abstract— This article presents a novel method for exactly
reformulating nondifferentiable collision avoidance constraints
into smooth, differentiable constraints using strong duality of
convex optimization. We focus on a controlled object whose goal
is to avoid obstacles while moving in an n-dimensional space.
The proposed reformulation is exact, does not introduce any
approximations, and applies to general obstacles and controlled
objects that can be represented as the union of convex sets.
We connect our results with the notion of signed distance, which
is widely used in traditional trajectory generation algorithms.
Our method can be applied to generic navigation and trajectory
planning tasks, and the smoothness property allows the use
of general-purpose gradient- and Hessian-based optimization
algorithms. Finally, in case a collision cannot be avoided, our
framework allows us to find “least-intrusive” trajectories, mea-
sured in terms of penetration. We demonstrate the efficacy
of our framework on an automated parking problem, where
our numerical experiments suggest that the proposed method
is robust and enables real-time optimization-based trajectory
planning in tight environments. Sample code of our example is
provided at https://github.com/XiaojingGeorgeZhang/OBCA.

Index Terms— Autonomous driving, collision avoidance, model
predictive control (MPC), navigation in tight environments,
nonlinear optimization, obstacle avoidance, path planning,
trajectory optimization.

I. INTRODUCTION

MANEUVERING autonomous systems in an environ-
ment with obstacles is a challenging problem that

arises in a number of practical applications, including robotic
manipulators and trajectory planning for autonomous systems,
such as self-driving cars and quadcopters. In almost all of those
applications, a fundamental feature is the system’s ability to
avoid collision with obstacles, which are, for example, humans
operating in the same area, other autonomous systems, or static
objects such as walls.

Optimization-based trajectory planning algorithms, such
as model predictive control (MPC), have received signifi-
cant attention recently, ranging from (unmanned) aircraft to
robots to autonomous cars [1]–[15]. This can be attributed
to the increase in computational resources, the availability of
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robust numerical algorithms for solving optimization prob-
lems, as well as MPC’s ability to systematically encode system
dynamics and constraints inside its formulation.

One fundamental challenge in optimization-based trajectory
planning is the appropriate formulation of collision avoidance
constraints, which are known to be nonconvex and compu-
tationally difficult to handle in general. While a number of
formulations have been proposed in the literature for dealing
with collision avoidance constraints, they are typically limited
by one of the following features.

1) The collision avoidance constraints are approximated
through linear constraint, and it is difficult to establish
the approximation error [10].

2) Existing formulations focus on point-mass controlled
objects and are not applicable to full-dimensional
objects.

3) If the obstacles are polyhedral, then the collision avoid-
ance constraints are often reformulated using integer
variables [16].

While this third reformulation is attractive for linear systems
with convex constraints (since, in this case, a mixed-integer
convex optimization problem can be solved), integer variables
should generally be avoided when dealing with nonlinear sys-
tems when designing real-time controllers for robotic systems.

In this article, we focus on a controlled object that moves
in a general n-dimensional space while avoiding obstacles,
and propose a novel approach for modeling obstacle avoid-
ance constraints that overcomes the aforementioned limita-
tions. Specifically, the contributions of this article can be
summarized as follows.

1) We show that if the controlled object and the obstacles
are described by convex sets, such as polytopes or ellip-
soids (or can be decomposed into a finite union of such
convex sets), then the collision avoidance constraints
can be exactly and nonconservatively reformulated as a
set of smooth nonconvex constraints. This is achieved
by appropriately reformulating the distance function
between two convex sets using strong duality of convex
optimization.

2) We provide a second, also exact and smooth, formulation
for collision avoidance based on the notion of signed dis-
tance, which characterizes not only the distance between
two objects but also their penetration. This reformulation
allows us to compute “least-intrusive” trajectories in case
collisions cannot be avoided.

3) We demonstrate the efficacy of the proposed obstacle
avoidance reformulations on an autonomous parking
application, where the controlled vehicles must navigate
in tight environments. We further show that, if the
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numerical solvers are appropriately initialized using
methods such as Hybrid A�, then both the distance
reformulation and the signed distance reformulation are
able to find dynamically feasible trajectories even in
challenging circumstances.

Since our framework allows the incorporation of system
dynamics and state/input constraints, we can generate safe and
kinodynamically feasible trajectories that can be tracked by
simple low-level controllers.

This article is organized as follows. Section II introduces the
problem setup. Section III presents the collision avoidance and
minimum-penetration formulations for the case when the con-
trolled object is a point mass. These results are then extended
to full-dimensional controlled objects in Section IV. Numer-
ical experiments demonstrating the efficacy of the proposed
method are given in Section V, and conclusions are drawn in
Section VI. The Appendix contains auxiliary results needed
to prove the main results of this article. The source code of
the autonomous parking example described in Section V is
provided at https://github.com/XiaojingGeorgeZhang/OBCA.

A. Related Work

A large body of work exists on the topic of obstacle
avoidance. In this article, we do not review, or com-
pare, optimization-based collision avoidance methods with
alternative approaches, such as those based on dynamic
programming [17], reachability analysis [18]–[20], graph
search methods, such as A� and Hybrid A� [21]–[23],
(random) sampling, such as rapidly exploring random
tree (RRT) and RRT� [24]–[27], or interpolating curves [28].
Indeed, collision avoidance problems are known to be NP-hard
in general [29], and all of the practical methods constitute
some sort of “heuristics,” whose performance depends on the
specific problem and configuration at hand. In the following,
we briefly review optimization-based approaches and refer
the interested reader to [30]–[34] for a comprehensive review
on the existing trajectory planning and obstacle avoidance
algorithms.

The basic idea in optimization-based methods is to express
the collision avoidance problem as an optimal control problem
and then solve it using numerical optimization techniques.
One way of dealing with obstacle avoidance is to use uncon-
strained optimization, in which case the objective function
is augmented with “artificial potential fields” that represent
the obstacles [35]–[39]. More recently, methods based on
constrained optimization has attracted attention in the control
community due to their ability to explicitly formulate collision
avoidance through constraints [1], [4], [6], [8], [10], [15], [40].
Broadly speaking, constrained optimization-based collision-
avoidance algorithms can be divided into two cases, based
on the modeling of the controlled object: point-mass models
and full-dimensional objects. Due to its conceptual simplicity,
the vast majority of the literature focuses on collision avoid-
ance for point-mass models and considers the shape of the
controlled object by inflating the obstacles. The obstacles are
generally assumed to be either polytopes or ellipsoids. For
polyhedral obstacles, disjunctive programming can be used to
ensure collision avoidance, which is often reformulated as a

mixed-integer optimization problem [1], [4], [16]. In the case
of ellipsoidal obstacles, the collision avoidance constraints can
be formulated as a smooth nonconvex constraint [41], [42],
and the resulting optimization problem can be solved using
generic nonlinear programming solvers.

The case of full-dimensional controlled objects has, to the
best of our knowledge, not been widely studied in the context
of optimization-based methods, with the exception of [8], [10],
and [43]. Li and Shao [43] model the controlled object
through its vertices and, under the assumption that all involved
objects are rectangles, ensure collision avoidance by keeping
all vertices of the controlled object outside the obstacle.
A more general way of handling collision avoidance for full-
dimensional controlled objects has been proposed in [10] using
the notion of signed distance, where the authors also propose a
sequential linearization technique to deal with the nonconvex-
ity of the signed distance function. Gerdts et al. [8] study the
obstacle avoidance formulation for time-optimal trajectories of
robotic manipulators using separating hyperplanes.

The approaches most closely related to our formulation
are the work of [6] and [8], where the authors propose
smooth and exact reformulations of the collision avoidance
constraint for point-mass controlled objects and polyhedral
obstacles [6] and full-dimensional controlled objects and
polyhedral obstacles [8]. Our approach differs from [6] in that
we consider the general case of full-dimensional controlled
objects. Furthermore, our approach differs from [8] in that
we consider general (not necessarily polyhedral) obstacles and
are also able to compute least-intrusive trajectories in case
collisions cannot be avoided.

B. Notation

Given a proper cone K ⊂ R
l and two vectors a, b ∈ Rl , then

a �K b is equivalent to (b−a) ∈ K. If K = R
l+ is the standard

cone, then �
Rl+ is equivalent to the standard (elementwise)

inequality ≤. Moreover, ‖ · ‖∗ is the dual norm of ‖ · ‖, and
K∗ ⊂ Rl is the dual cone of K. Note that if ‖ ·‖ = ‖·‖2 is the
Euclidean distance, then ‖ · ‖∗ = ‖ · ‖2. The “space” occupied
by the controlled object (e.g., a drone, vehicle, or robot in
general) is denoted as E ⊂ Rn ; similarly, the space occupied
by the obstacles is denoted as O ⊂ Rn .

II. PROBLEM DESCRIPTION

A. Dynamics, Objective, and Constraints

We assume that the dynamics of the controlled object takes
the form

xk+1 = f (xk, uk) (1)

where xk ∈ Rnx is the state of the controlled object at time
step k given an initial state x0 = xS , uk ∈ Rnu is the control
input, and f : Rnx ×Rnu → Rnx describes the dynamics of the
system. In most of the cases, the state xk contains information,
such as the position pk ∈ Rn and angles θk ∈ Rn of the
controlled object, as well the velocities ṗk and angular rates
θ̇k . In this article, we assume that no disturbance is present,
and that the system is subject to input and state constraints of
the form

h(xk, uk) ≤ 0 (2)
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where h : Rnx × Rnu → Rnh , nh is the number of constraints,
and the inequality in (2) is interpreted elementwise. Our goal
is to find a control sequence, over a horizon N , which allows
the controlled object to navigate from the initial state xS to its
final state xF ∈ Rnx while optimizing some objective function
J = ∑N

k=0 �(xk, uk), where � : Rnx ×Rnu → R is a stage cost,
and avoiding M ≥ 1 obstacles O(1), O(2), . . . , O(M) ⊂ Rn .
Throughout this article, we assume that the functions f (·, ·),
h(·, ·), and �(·, ·) are smooth. Smoothness is assumed for
simplicity, although all forthcoming statements apply equally
to cases when those functions are twice continuously differ-
entiable.

B. Obstacle and Controlled Object Modeling

Given the state xk , we denote by E(xk) ⊂ Rn the “space”
occupied by the controlled object at time k, which we assume
is a subset of Rn . The collision avoidance constraint at time
k is now given by1

E(xk) ∩ O
(m) = ∅ ∀m = 1, . . . , M. (3)

Constraint (3) is nondifferentiable in general, e.g., when the
obstacles are polytopic [6], [10]. In this article, we will
remodel (3) in such a way that both continuity and differentia-
bility are preserved. To this end, we assume that the obstacles
O(m) are convex compact sets with nonempty relative interior,2

and can be represented as

O
(m) = {y ∈ R

n : A(m)y �K b(m)} (4)

where A(m) ∈ Rl×n , b(m) ∈ Rl , and K ⊂ Rl is a closed
convex pointed cone with nonempty interior. Representation
(4) is entirely generic since any compact convex set admits a
conic representation of the form (4) [44, p.15]. In particular,
polyhedral obstacles can be represented as (4) by choosing
K = R

l+; in this case, �K corresponds to the well-known
elementwise inequality ≤. Likewise, ellipsoidal obstacles can
be represented by letting K be the second-order cone; see [45]
for details. To simplify the upcoming exposition, the same
cone K is assumed for all obstacles; the extension to obstacle-
specific cones K(m) is straightforward. Similarly, we assume
for simplicity that the obstacles O(m) are static. Nevertheless,
the forthcoming reformulations can be adapted to time-varying
obstacles O

(m)
k = {y ∈ R

n : A(m)
k y �K b(m)

k } by replacing the
time-invariant matrices A(m) and b(m) in (4) with time-varying
matrices A(m)

k and b(m)
k . We also note that, in the case of time-

varying obstacles, issues related to recursive feasibility might
arise. We will not dwell on these issues in this article and refer
the interested reader to [46] for results along that direction.

In this article, we will consider controlled objects
E(xk) that are modeled as point-masses as well as

1In this article, we only consider collision avoidance constraints that are
associated with the position and geometric shape of the controlled object,
which are typically defined by its position pk and angles θk . This is not
a restriction of the theory, as the forthcoming approaches can be easily
generalized to collision avoidance involving other states, but done to simplify
exposition of the material.

2Nonconvex obstacles can often be approximated/decomposed as the union
of convex obstacles.

full-dimensional objects. In the former case, E(xk) simply
extracts the position pk from the state xk , that is

E(xk) = pk . (5a)

In the latter case, we will model the controlled object E(xk) as
the rotation and translation of an “initial” convex set B ⊂ Rn ,
that is

E(xk) = R(xk)B + t (xk), B := {y : Gy �K̄ g} (5b)

where R : R
nx → R

n×n is an (orthogonal) rotation matrix and
t : Rnx → Rn is the translation vector. The matrices (G, g) ∈
Rh×n ×Rh and the cone K̄ ⊂ Rh , which we assume is closed,
convex, and pointed, define the shape of our initial (compact)
set B and are assumed to be known. Often, the rotation matrix
R(·) depends on the angles θk of the controlled object, while
the translation vector t (·) depends on the position pk of the
controlled object. We assume throughout that the functions
R(·) and t (·) are smooth.

C. Optimal Control Problem With Collision Avoidance

By combining (1)–(3), the constrained finite-horizon
optimal control problem with collision avoidance constraint
is given by

min
x,u

N∑
k=0

�(xk, uk)

s.t. x0 = xS, xN+1 = xF

xk+1 = f (xk, uk),
h(xk, uk) ≤ 0,

E(xk) ∩ O(m) = ∅,

⎫⎬
⎭ k = 0, . . . , N

m = 1, . . . , M
(6)

where E(xk) is either given by (5a) (point-mass model) or
(5b) (full-dimensional set), x := [x0, x1, . . . , xN+1] is the
collection of all states, and u := [u0, u1, . . . , uN ] is the
collection of all inputs. A key difficulty in solving problem
(6), even for linear systems with convex objective function and
convex state/input constraints, is the presence of the collision-
avoidance constraints E(xk) ∩ O(m) = ∅, which, in general,
are nonconvex and nondifferentiable [6], [10]. In the following,
we present two novel approaches for modeling collision avoid-
ance constraints that preserve continuity and differentiability
and are amendable for use with existing off-the-shelf gradient-
and Hessian-based optimization algorithms.

D. Collision Avoidance

A popular way of formulating collision avoidance is based
on the notion of signed distance [10]

sd(E(x), O) := dist(E(x), O) − pen(E(x), O) (7)

where dist(·, ·) and pen(·, ·) are the distance and penetration
function and are defined as

dist(E(x), O) := min
t

{‖t‖: (E(x) + t) ∩ O 
= ∅} (8a)

pen(E(x), O) := min
t

{‖t‖: (E(x) + t) ∩ O = ∅}. (8b)

Roughly speaking, the signed distance is positive if E(x) and
O do not intersect, and negative if they overlap. Therefore, col-
lision avoidance can be ensured by requiring sd(E(x), O) > 0.
Unfortunately, directly enforcing sd(E(x), O) > 0 inside the
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optimization problem (6) is generally difficult since it is
nonconvex and nondifferentiable in general [10]. Furthermore,
for optimization algorithms to be numerically efficient, they
require an explicit representation of the functions they are
dealing with, in this case sd(·, ·). This, however, is difficult
to obtain in practice since sd(·, ·) itself is the solution of
the optimization problems (8a) and (8b). As a result, existing
algorithms in the literature often approximate (7) through local
linearization [10], for which it is difficult to establish bounds
on approximation errors.

In the following, we propose two reformulation techniques
for obstacles avoidance that overcome the issues of nondif-
ferentiability and do not require an explicit representation of
the signed distance. We begin with the point-mass models in
Section III and treat the general case of the full-dimensional
controlled objects in Section IV.

III. COLLISION AVOIDANCE FOR POINT-MASS MODELS

In this section, we first present a smooth reformulation of
(6) when E(xk) = pk in Section III-A and then extend the
approach in Section III-B to generate the minimum-penetration
trajectories in case collisions cannot be avoided. To simplify
notation, the time indices k are omitted in the remainder of
this section.

A. Collision-Free Trajectory Generation

Proposition 1: Assume that the obstacle O and the con-
trolled object are given as in (4) and (5a), respectively, and let
dmin ≥ 0 be a desired safety margin between the controlled
object and the obstacle. Then, we have

dist(E(x), O) > dmin

⇐⇒ ∃λ�K∗ 0 : (A p − b)�λ>dmin, ‖A�λ‖∗ ≤1. (9)

Proof: It follows from (4) and (8a) that dist(E(x), O) =
mint {‖t‖: A(E(x) + t) �K b}. Following [45, p.401], its
dual problem is given by maxλ{(AE(x) − b)�λ : ‖A�λ‖∗ ≤
1, λ �K∗ 0}, where ‖ · ‖∗ is the dual norm associated with
‖ · ‖ and K∗ is the dual cone of K. Since O is assumed
to have nonempty relative interior, strong duality holds, and
dist(E(x), O) = maxλ{(A E(x) − b)�λ : ‖A�λ‖∗ ≤ 1, λ �K∗
0}. Hence, for any nonnegative scalar dmin, dist(E(x), O) >
dmin is satisfied if and only if, there exists λ �K∗ 0 : (A E(x)−
b)�λ > dmin, ‖A�λ‖∗ ≤ 1. The desired result follows from
identity (5a).

Intuitively speaking, any variable λ satisfying the right-
hand side of (9) is a certificate verifying the condition
dist(E(x), O) > dmin. Since E(x) ∩ O = ∅ is equivalent to
dist(E(x), O) > 0, the optimal control problem (6) for the
point-mass model (5a) is given by

min
x,u,λ

N∑
k=0

�(xk, uk)

s.t. x0 = xS, xN+1 = xF

xk+1 = f (xk, uk), h(xk, uk) ≤ 0

(A(m) pk − b(m))�λ
(m)
k > 0∥∥A(m)�λ

(m)
k

∥∥∗ ≤ 1, λ
(m)
k �K∗ 0

for k = 0, . . . , N, m = 1, . . . , M (10)

where pk is the position of the controlled object at time
k, λ

(m)
k is the dual variable associated with obstacle O(m)

at time step k, and the optimization is performed over
the states x, the inputs u, and the dual variables λ =
[λ(1)

0 , . . . , λ
(m)
0 , λ

(1)
1 , . . . , λ

(m)
N ]. We emphasize that (10) is an

exact reformulation of (6) and that the optimal trajectory x∗ =
[x∗

0 , x∗
1 , . . . , x∗

N+1] obtained by solving (6) is kinodynamically
feasible.

Remark 1: Without further assumptions on the norm ‖ · ‖
and the cone K, the last two constraints in (10) are not guaran-
teed to be smooth, a property that many general-purpose non-
linear optimization algorithms require.3 Fortunately, it turns
out that these constraints are smooth for the practically relevant
cases of ‖·‖ being the Euclidean distance and K either the stan-
dard cone or the second-order cone, which allows us to model
polyhedral and ellipsoidal obstacles. In these cases, and under
the assumption that the functions f (·, ·), h(·, ·), and �(·, ·)
are smooth, (10) is a smooth nonlinear optimization problem
that is amendable to general-purpose nonlinear optimization
algorithms, such as Interior Point OPTimizer (IPOPT) [47].
Without going into details, we point out that the smoothness
is retained when ‖ · ‖ = ‖ · ‖p is a general p-norm, with
p ∈ (1,∞), and K is the Cartesian product of p-order cones
Kp := {(s, z) : ‖z‖p ≤ s}, with p ∈ (1,∞). In this case,
the dual norm is given by ‖ · ‖∗ = ‖ · ‖q and the dual cone is
(Kp)

∗ = Kq , where q satisfies 1/p + 1/q = 1; see [45] for
details on dual norms and dual cones.

While reformulation (10) can be used for obstacle avoid-
ance, it is limited to finding collision-free trajectories. Indeed,
in case collisions cannot be avoided, the aforementioned
formulation is not able to find “least-intrusive” trajectories by
softening the constraints. Intuitively speaking, this is because
(10) is based on the notion of distance, and the distance
between two overlapping objects (as is in the case of collision)
is always zero, regardless of the penetration. From a practical
point of view, this implies that slack variables cannot be
included in the constraints of (9) because the optimal control
problem is not able to distinguish between “severe” and “less
severe” colliding trajectories. Furthermore, in practice, it is
often desirable to soften constraints and includes slack vari-
ables to ensure the feasibility of the (nonconvex) optimization
problem since (local) infeasibilities in a nonconvex optimiza-
tion problem are known to cause numerical difficulties. In the
following, we show how the above-mentioned limitations can
be overcome by considering the notion of penetration and
softening the collision avoidance constraints.

B. Minimum-Penetration Trajectory Generation

In this section, we consider the design of
minimum-penetration trajectories for cases when a collision
cannot be avoided and the goal is to find a “least-intrusive”
trajectory. Following the literature [48], [49], we measure
“intrusion” in terms of penetration as defined in (8b).

3Strictly speaking, these solvers often require the cost function and con-
straints to be twice continuously differentiable only. Smoothness is assumed
in this article for the sake of simplicity.
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Proposition 2: Assume that the obstacle O and the con-
trolled object are given as in (4) and (5a), respectively, and let
pmax ≥ 0 be a desired maximum penetration of the controlled
object and the obstacle. Then, we have

pen(E(x), O) < pmax

⇐⇒∃λ�K∗ 0 : (b− A p)�λ<pmax, ‖A�λ‖∗ =1. (11)

Proof: The proof, along with auxiliary lemmas, is given
in the Appendix.
Proposition 2 resembles Proposition 1 with the difference that
the convex inequality constraint ‖A�λ‖∗ ≤ 1 is replaced
with the nonconvex equality constraint ‖A�λ‖∗ = 1. In the
following, we will see that Propositions 1 and 2 can be
combined to represent the signed distance as defined in (7).

Theorem 1: Assume that the obstacle O and the controlled
object are given as in (4) and (5a), respectively. Then, for any
value d ∈ R, we have

sd(E(x), O) > d

⇐⇒ ∃λ�K∗ 0 : (A p−b)�λ>d, ‖A�λ‖∗ =1. (12)

Proof: By definition, sd(E(x), O) = dist(E(x), O) if
E(x) ∩ O = ∅, and sd(E(x), O) = −pen(E(x), O) if E(x) ∩
O 
= ∅. Let E(x)∩O 
= ∅, in which case (12) follows directly
from (11). If E(x) ∩ O = ∅, then we have from (9) that
sd(E(x), O) > d is equivalent to ∃λ �K∗ 0 : (A p − b)�λ >
d, ‖A�λ‖∗ ≤ 1. Due to homogeneity with respect to λ,
if the previous condition is satisfied, then there always exists
a (scaled) dual-multiplier λ′ �K∗ 0, such that (A p − b)�λ′ >
d, ‖A�λ′‖∗ = 1. This concludes the proof.

Reformulation (12) is similar to reformulation (9) with the
difference that (12) holds for all d ∈ R, while (9) only holds
for d ≥ 0. The “price” we pay for this generalization is
that the convex constraint ‖A�λ‖∗ ≤ 1 is turned into the
nonconvex equality constraint ‖A�λ‖∗ = 1, which, as we will
see later on, generally results in longer computation times.
Nevertheless, Theorem 1 allows us to compute trajectories
of least penetration whenever collision cannot be avoided by
solving the following soft-constrained minimum-penetration
problem:

min
x,u,s,λ

N∑
k=0

[
�(xk, uk) + κ ·

M∑
m=1

s(m)
k

]

s.t. x0 = x(0), xN+1 = xF

xk+1 = f (xk, uk), h(xk, uk) ≤ 0

(A(m) pk − b(m))�λ
(m)
k > −s(m)

k∥∥A(m)�λ
(m)
k

∥∥∗ = 1,

s(m)
k ≥ 0, λ

(m)
k �K∗ 0

for k = 0, . . . , N, m = 1, . . . , M (13)

where pk is the position of the controlled object at time k,
s(m)

k ∈ R+ is the slack variable associated with the object
O(m) at time step k, and κ ≥ 0 is a weight factor that keeps
the slack variable as close to zero as possible. Without going
into details, we point out that the weight κ should be chosen
“big enough,” such that the slack variables only become active
when the original problem is infeasible, i.e., when the obstacle

avoidance is not possible [50]. Note that a positive slack
variable implies a colliding trajectory, where the penetration
depth is given by s(m)

k . We close this section by pointing out
that if, a priori, it is known that a collision-free trajectory can
be generated, then formulation (10) should be given preference
over formulation (13) because the former has fewer decision
variables, and because the constraint ‖A(m)�λ

(m)
k ‖∗ ≤ 1 is

convex, which generally leads to improved solution times. The
smoothness of (13) is ensured if ‖·‖ is the Euclidean distance,
and K is either the standard cone or the second-order cone;
see Remark 1 for details.

IV. COLLISION AVOIDANCE FOR FULL-DIMENSIONAL

CONTROLLED OBJECTS

Section III provided a framework for computing collision-
free and minimum-penetration trajectories for controlled
objects that are described by the point-mass model. While
such models can be used to generate trajectories for “ball-
shaped” controlled objects, done by setting the minimum
distance dmin equal to the radius of the controlled object, it can
be restrictive in other cases. For example, modeling a car in a
parking lot as a Euclidean ball can be very conservative and
prevent the car from finding a parking spot. To alleviate this
issue, we show in this section how the results of Section III
can be extended to full-dimensional controlled objects.

A. Collision-Free Trajectory Generation

Similar to Section III, we begin by first reformulating the
distance function, which will allow us to generate collision-
free trajectories.

Proposition 3: Assume that the controlled object and the
obstacle are given as in (5b) and (4), respectively, and let
dmin ≥ 0 be a desired safety margin. Then, we have

dist(E(x), O)> dmin

⇔∃λ�K∗ 0, μ�K̄∗ 0 : −g�μ+(At (x)−b)�λ>dmin,

G�μ+ R(x)� A�λ=0, ‖A�λ‖∗ ≤1. (14)

Proof: Recall that dist(E(x), O) =
mine,o{‖e−o‖: Ao �K b, e ∈ E(x)} = mine′,o{‖R(x)e′ +
t (x)−o‖: Ao �K b, Ge′ �K̄ g}, where the last equality
follows from (5b). The dual of this minimization problem
is given by maxλ,μ{−g�μ + (At (x) − b)�λ : G�μ +
R(x)� A�λ = 0, ‖A�λ‖∗ ≤ 1, λ �K∗ 0, μ �K̄∗ 0} (see
[45, Sec. 8.2] for the derivation), where ‖ · ‖∗ is the dual
norm and K∗ and K̄∗ are the dual cones of K and K̄,
respectively. Since O and B are assumed to have nonempty
relative interior, strong duality holds, and dist(E(x), O) >
dmin ⇔ maxλ,μ{−g�μ + (At (x) − b)�λ : G�μ +
R(x)� A�λ = 0, ‖A�λ‖∗ ≤ 1, λ �K∗ 0, μ �K̄∗ 0} >
dmin ⇔ ∃λ �K∗ 0, μ �K̄∗ 0 : − g�μ + (At (x) − b)�λ >
dmin, G�μ + R(x)� A�λ = 0, ‖A�λ‖∗ ≤ 1.

Compared with Proposition 1, we see that the full-
dimensional controlled objects require the introduction of
the additional dual variables μ(m), one for each obstacle
O(m). By setting dmin = 0, we now obtain the following
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reformulation of (6) for the case of full-dimensional objects:

min
x,u,λ,μ

N∑
k=0

�(xk, uk)

s.t. x0 = x(0), xN+1 = xF

xk+1 = f (xk, uk), h(xk, uk) ≤ 0

− g�μ
(m)
k + (A(m) t (xk) − b(m))�λ

(m)
k > 0

G�μ
(m)
k + R(xk)

� A(m)�λ
(m)
k = 0∥∥A(m)�λ

(m)
k

∥∥∗ ≤ 1, λ
(m)
k �K∗ 0, μ

(m)
k �K̄∗ 0

for k = 0, . . . , N, m = 1, . . . , M (15)

where λ
(m)
k and μ

(m)
k are the dual variables associated with the

obstacle O(m) at step k, λ and μ are the collection of all λ
(m)
k

and μ
(m)
k , respectively, and the optimization is performed over

(x, u,λ,μ). Note that (15) is an exact reformulation of (6).
The smoothness of (15) is ensured if ‖ · ‖ is the Euclidean
distance, and K and K̄ are either the standard cone or the
second-order cone; see also Remark 1 for details.

Similar to the point-mass case in Section III-A, the optimal
control problem (15) is able to generate collision-free trajec-
tories, but it is unable to find “least-intrusive” trajectories in
case collision-free trajectories do not exist. This limitation is
addressed next.

B. Minimum-Penetration Trajectory Generation

We overcome the above-mentioned limitation by
considering again the notion of penetration. We begin
with the following result.

Proposition 4: Assume that the obstacles and the controlled
object are given as in (4) and (5b), respectively, and let pmax ≥
0 be a maximal penetration depth. Then, we have

pen(E(x), O)<pmax

⇐⇒ ∃λ �K∗ 0, μ �K̄∗ 0 : g�μ+(b− A t (x))� λ<pmax,

G�μ+ R(x)� A�λ=0, ‖A�λ‖∗ =1. (16)

Proof: It follows from [48] that pen(E(x), O) =
pen(0, O − E(x)), where O − E(x) := {o − e : o ∈ O, e ∈
E(x)} is the Minkowski difference. Furthermore, we have
from the proof of Proposition 2 that pen(0, O − E(x)) =
inf{z : ‖z‖∗=1}{maxy∈O−E(x){y�z}}. Using strong duality of
convex optimization, we can dualize the inner maximization
problem as maxo∈O,e∈E(x){z�(o − e)} = maxo∈O,e′∈B{z�(o −
R(x)e′ − t (x))} = minλ,μ{b�λ + g�μ − z�t (x) : A�λ =
z, G�μ = −R�z : λ �K ∗ 0, μ �K̄∗ 0}. Hence, pen(0, O −
E(x)) = infz,λ,μ{b�λ + g�μ − z�t (x) : A�λ = z, G�μ =
−R�z, ‖z‖∗ = 1}. Eliminating the z-variable using the first
equality constraint and following the steps of the proof of
Proposition 2 give the desired result.

We notice that an alternative way of deriving the results
of Propositions 3 and 4, which, however, requires further
investigation, could be to model the controlled object as a
point mass, “add” its shape to the obstacle’s shape, and then
apply the results of Section III.

Theorem 2 shows that Propositions 3 and 4 can be combined
to represent the signed distance function.

Theorem 2: Assume that the obstacles and the controlled
object are given as in (4) and (5b), respectively. Then, for any
d ∈ R, we have

sd(E(x), O) > d

⇐⇒ ∃λ�K∗ 0, μ�K̄∗ 0 : −g�μ+(At (x)−b)�λ>d,

G�μ + R(x)� A�λ=0, ‖A�λ‖∗ =1. (17)

Proof: By definition, sd(E(x), O) = dist(E(x), O) if
E(x) ∩ O = ∅, and sd(E(x), O) = −pen(E(x), O) if E(x) ∩
O 
= ∅. Consider now E(x) ∩ O 
= ∅, in which case (17)
follows directly from (16). Assume now that E(x) ∩ O = ∅;
then, we have from (14) that sd(E(x), O) > d is equivalent
to ∃λ �K∗ 0, μ �K̄∗ 0 : − g�μ + (At (x) − b)�λ >
d, G�μ+R(x)� A�λ = 0, ‖A�λ‖∗ ≤ 1. Due to homogeneity
with respect to λ and μ, if the previous condition is satisfied,
then there also exist λ′ �K∗ 0 and μ′ �K̄ ∗ 0, such that
−g�μ + (At (x) − b)�λ > d, G�μ + R(x)� A�λ = 0, and
‖A�λ‖∗ = 1. This concludes the proof.
Theorem 2 allows us to formulate the following soft-
constrained minimum-penetration optimal control problem:

min
x,u,s,λ,μ

N∑
k=0

[
�(xk, uk) + κ ·

M∑
m=1

s(m)
k

]

s.t. x0 = xS, xN+1 = xF

xk+1 = f (xk, uk), h(xk, uk) ≤ 0

− g�μ
(m)
k + (A(m) t (xk) − b(m))�λ

(m)
k > −s(m)

k

G�μ
(m)
k + R(xk)

� A(m)�λ
(m)
k = 0∥∥A(m)�λ

(m)
k

∥∥∗ = 1

s(m)
k ≥ 0, λ

(m)
k �K∗ 0, μ

(m)
k �K̄∗ 0

for k = 0, . . . , N, m = 1, . . . , M (18)

where s(m)
k ∈ R+ is the slack variable associated with obstacle

O(m) at time step k and κ ≥ 0 is a weight factor that keeps
the slack variable as small as possible. The smoothness of
(18) is ensured if ‖ · ‖ is the Euclidean distance, and K and
K̄ are either the standard cone or the second-order cone; see
Remark 1 for details.

In Section V, we illustrate our obstacle avoidance formu-
lations on an automated parking problem, where the full-
dimensional obstacle avoidance problem formulation is used.
We refer the interested reader to [51], an extended version of
this article, for a quadrotor navigation example that uses the
point-mass model.

V. EXAMPLE: AUTONOMOUS PARKING

As an application for our collision avoidance formulation,
we consider the autonomous parking problem for self-driving
cars. Specifically, we consider the case where the maneuver-
able space is limited and where the vehicle has to move in a
tight environment (see Figs. 1 and 2). Intuitively, in order for a
vehicle to find a collision-free path in tight environments, it is
important to model the vehicle’s shape as accurately and least
conservatively as possible. Indeed, modeling a vehicle’s shape
too conservatively, such as approximating it through a ball
or ellipse, maybe prevents the vehicle from finding a feasible
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Fig. 1. Reverse parking maneuver. The controlled vehicle is shown in green
at every time step. Vehicle starts on the left facing to the right and ends facing
upward; see https://youtu.be/V7IUPW2qDFc for an animation.

Fig. 2. Parallel parking maneuver. The controlled vehicle is shown in green
at every time step. Vehicle starts facing to the right and ends facing to the
right; see https://youtu.be/FST7li4M6lU for an animation.

trajectory. In this section, we model the car as a rectangle
and then employ the full-dimensional formulation described
in Section IV. We show that our modeling framework allows
us to find obstacle-free parking trajectories even in tight
environments. Two scenarios are considered: reverse parking
(see Fig. 1) and parallel parking (see Fig. 2).

A. Environment and Obstacle Modeling

For the reverse parking scenario, the parking spot is
assumed 2.6 m wide and 5.2 m long. The width of the road,
where the car can maneuver in, is 6 m (see Fig. 1). For the
parallel parking scenario, the parking spot is 2.5 m deep and
6 m long, and the space to maneuver is 6 m wide (see Fig. 2).
Note that the obstacles in the reverse parking scenario can be
described by three axis-aligned rectangles, while the obstacles
in the parallel parking scenario can be described by four axis-
aligned rectangles. In both cases, the controlled vehicle is
modeled as a rectangle of size 4.7 × 2 m, whose orientation
is determined by the car’s yaw angle.

B. System Dynamics and Cost Function

The car is described by the classical kinematic bicycle
model, which is well-suited for velocities used in typical
parking scenarios. The states (X, Y ) correspond to the center
of the rear axis, while ϕ is the yaw angle with respect to
the x-axis and v is the velocity with respect to the rear axis.
The inputs are the steering angle δ and the acceleration a.

Hence, the continuous-time dynamics of the car is given by

Ẋ = v cos(ϕ)

Ẏ = v sin(ϕ)

ϕ̇ = v tan(δ)

L
v̇ = a (19)

where L = 2.7 m is the wheel base of the car. The steering
angle is limited between ±0.6 rad (approximately 34◦), with
rate constraints δ̇ ∈ [−0.6, 0.6] rad/s; acceleration is limited to
be between ±1 m/s2. We limit the car’s velocity to lie between
−1 and 2 m/s. The dynamics can be brought into the form
(1) using a (forward) Euler discretization, such that xk+1 =
xk + Topt f̃ (xk, uk), where Topt is the sampling time, uk :=
(δk, ak) is the control input, and f̃ (·, ·) is the continuous-time
dynamics that can be obtained from (19).

Our control objective is to navigate the vehicle as fast
as possible while avoiding excessive control inputs and rate
of changes in the control inputs. We combine these com-
peting goals as a weighted sum of the form J = qτF +∑N−1

k=0 u�
k Ruk + 
u�

k R

uk , where τF is the final time,

uk := (uk − uk−1)/Topt is the change in control inputs,
and R = R� � 0, R
 = R�


 � 0 and q ≥ 0 are
the weighting factors. Motivated by [52], we do not directly
minimize τF ; instead, observing that τF = NTopt, we will
treat the discretization time Topt as a decision variable, giving
rise to the following cost function:

J (u, Topt) = q NTopt +
N−1∑
k=0

u�
k Ruk + 
u�

k R

uk . (20)

Note that treating Topt as an optimization variable has the
additional benefit that the duration of the maneuvers does not
need to be fixed a priori, allowing us to avoid feasibility issues
caused by maneuvers that are too short. However, having Topt
as a decision variable comes at the cost of introducing an
additional decision variable Topt, which renders the dynamics
“more nonlinear,” which can be seen when looking at the Euler
discretization.

C. Choice of Initial Guess

Recall that (15) and (18) are nonconvex optimization
problems and hence computationally challenging to solve in
general. In practice, one has to content oneself with a locally
optimal solution that, for instance, satisfies the Karush–Kuhn–
Tucker (KKT) conditions [47] since most of the numerical
solvers operate locally. Furthermore, it is well-known that
the solution quality critically depends on the initial guess
(“warm starting point”) that is provided to the solvers, and that
different initial guesses can lead to different (local) optima.
Unfortunately, computing a good initial guess is often diffi-
cult and highly problem-dependent; ideally, the initial guess
should be collision-free and approximately satisfy the system
dynamics.

For our parking example, we have observed that the Hybrid
A� algorithm from [22] is able to provide good initial guesses.
Hybrid A� is an extension of the A� algorithm [53], [54],

Authorized licensed use limited to: Tsinghua University. Downloaded on April 21,2020 at 12:58:23 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

Fig. 3. Initial guess provided by Hybrid A� for reverse parking.

Fig. 4. Initial guess provided by Hybrid A� for parallel parking.

and the main idea behind Hybrid A� is to use a simplified
vehicle model with states (X, Y, ϕ) and a finite number of
steering inputs to generate a coarse parking trajectory. Like A�,
Hybrid A� grids the state space and performs a tree search,
where the nodes are expanded using the simplified vehicle
model. We refer the interested reader to [22] for details on
Hybrid A�. Figs. 3 and 4 show two trajectories obtained
from the Hybrid A� algorithm. We observe that, due to the
discretization of state and input, the paths generated by Hybrid
A� seem more “bang-bang” and less “smooth” than those
shown in Figs. 1 and 2.

D. Simulation Results

To evaluate the performance of formulations (15) and (18),
we study the reverse and parallel trajectory planning problems.
For both cases, we consider different starting positions but
one fixed end position at X = 0 m and investigate the
computation time of each method. The starting positions are
generated by gridding the maneuvering space within X ∈
[−10, 10] m and Y ∈ [6.5, 9.5] m, with 21 grid points
in the x-direction and 4 grid points in the y-direction (see
Fig. 5). The orientation for all the starting points is ϕ = 0,
resulting in a total of 84 starting points. The horizon length
N is given by the Hybrid A� algorithm. The optimization
problems are implemented with the modeling toolbox JuMP
in the programming language Julia [55], and IPOPT [47]
is used as the numerical solver. The problems are solved
on a 2013 MacBook Pro with an i7 processor clocked at
2.6 GHz. A Julia-based example code can be found at
https://github.com/XiaojingGeorgeZhang/OBCA.

We begin by considering the reverse parking case, where
one specific maneuver is shown in Fig. 1. The computation

Fig. 5. Solution time for reverse parking with distance formulation (15) (top)
and signed-distance formulation (18) (bottom).

times for the distance and the signed distance formulation are
listed in Table I (upper half) and shown in Fig. 5, for all 84 ini-
tial conditions. Table I indicates that the distance formulation
is generally faster than the signed-distance formulation, with a
mean computation time of 0.60 s compared with 1.03 s. This is
not surprising since the signed distance formulation has more
decision variables due to the presence of the slack variables
s(m)

k , see (18). Furthermore, we see from Fig. 5 that both
approaches are able to find feasible parking trajectories, for
all 84 considered initial conditions. Interestingly, we see that
there are no obvious relations between the starting positions
and the solution times.

The computation times of the parallel parking case are
shown in Fig. 6 and Table I (lower half). Similar as in the
reverse parking case, we see that both approaches have a
100% success rate and that, again due to the presence of
the slack variables, the signed distance formulation requires
longer computation time (1.67 s on average) than the dis-
tance formulation (0.87 s on average). Compared with reverse
parking, we see that parallel parking is computationally more
demanding. We believe that this is due to the fact that the
paths in parallel parking are generally longer than in reverse
parking since the car first needs to drive to the right before it
can back into the parking lot (see also Fig. 2).

We close this section with the following remarks. First,
we notice from Table I that the computation time of Hybrid
A� is comparable to solving the (signed) distance optimization
problem. Furthermore, the maximum overall computation time
of Hybrid A� and signed distance reformulation is 7.7 s
(reserve parking) and 9.2 s (parallel parking). This implies
that, when initialized with Hybrid A�, the proposed collision
avoidance framework enables practical real-time autonomous
parking in tight environments. This is because stopping a
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TABLE I

COMPUTATION TIME OF HYBRID A� , DISTANCE FORMULATION (15),
AND SIGNED DISTANCE FORMULATION (18)

Fig. 6. Solution time for parallel parking with distance formulation (15)
(top) and signed-distance formulation (18) (bottom).

vehicle and allowing it to plan for a few seconds is a viable
approach in practice.4 Second, we point out that, due to
the time discretization, collisions in between the sampled
times are not considered and are not ensured automatically.
Similarly, the proposed framework currently does not consider
other issues, such as sensor noise, disturbances, and/or model
uncertainties. The interested reader is referred to [10] and [56]
for techniques dealing with those two challenges.

E. Driveability and Comparison to Hybrid A� Trajectory

In this section, we compare the paths generated by (15)
with the paths generated by Hybrid A�. More specifically,
we compare the maneuver time, the tracking error, and
the input cost (21) below when the respective paths are
tracked with a simple path-following controller, which con-
sists of a P-controller in the longitudinal direction and

4We also point out that the numerics were carried out on a 2013 Mac-
Book Pro, and better computation times can be expected on an (future)
autonomous vehicle that is generally equipped with multiple state-of-the-art
high-performance processors.

TABLE II

COMPARISON OF MANEUVERING TIME, MAXIMUM TRACKING ERROR,
AND INPUT COST

an linear quadratic regulator (LQR)-controller in the lateral
direction. This is a common approach in vehicle path-
following [57], and the implementation details are provided
in the Appendix. Table II reports the maneuvering time,
the maximum tracking error along each trajectory, and the
averaged input cost

Ju = 1

NPF

(
NPF∑
k=0

u�
k Ruk + 
u�

k R

uk

)
(21)

where NPF is the number of time steps, with respect to a
sampling time of TPF = 0.05 s, required by the path follower
to finish the parking maneuvers, and R = diag(0.01, 0.5),
and R
 = diag(0.1, 0.1). With u = (δ, a), we see that
steering is penalized significantly less than acceleration since
constant steering is not problematic in parking. Changes in
both inputs are penalized equally. Note that we consider such
an average input cost to ensure that the cost is independent of
the maneuver duration.

We see from Table II that the paths generated by (15) can
be tracked more accurately than those generated by Hybrid
A�, albeit not by a big margin. However, we can observe that
the paths generated by Hybrid A� require, on average, twice
as much time to track than those generated by (15). This is
mainly due to the fact that Hybrid A� relies on a simplified
model, which does not generate a velocity profile, and also
because, due to the finite number of steering inputs, Hybrid A�

allows for jumps in the steering command. Therefore, the path-
following controller, which has to consider the steering rate
constraints, must be more “cautious” when tracking these
paths. In contrast, (15) is able to take into account the full
system dynamics, which includes a velocity profile, as well as
steering rate constraints. Moreover, we see from Table II that
the input efforts required to follow the Hybrid A� paths are,
on average, 3–4.75 times higher compared with (15). This is
due to the fact that Hybrid A� does not take into account input
rate cost and uses a finite number of inputs.

Authorized licensed use limited to: Tsinghua University. Downloaded on April 21,2020 at 12:58:23 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

Summarizing Table II, we see that, while the paths gen-
erated by Hybrid A� are collision-free and kinematically
feasible, they are challenging to track with the low-level path-
following controllers and result in higher input cost because
they do not incorporate information on the velocity and do
not take into account the rate constraints in both steering and
acceleration, requiring the vehicle to go slow in order to take
“aggressive” maneuvers.

We conclude this section by pointing out that it is,
in principle, possible to include a velocity profile and input
rate constraints into Hybrid A� by augmenting the state
(X, Y, ϕ) with (v, δ, a). While this is theoretically possible,
it is generally not done in practice since gridding in higher
dimensions will result in significantly longer computation
times (the curse of dimensionality).

F. Discussion and Comparison to Sampling Methods

Sampling-based algorithms, such as RRT and RRT�, are
popular path generation methods for autonomous parking
problems [24]–[27]. In the following, we briefly review
the basic idea behind RRT� for parking purposes and then
highlight the conceptual differences between it and our
optimization-based formulations (15) and (18).

The main idea of RRT� is to construct a search tree in the
reduced state space (X, Y, ϕ) by randomly sampling the state
space and connecting those samples to the existing search tree
by means of the so-called steering function.5 In general, find-
ing the optimal steering function is very difficult and requires
solving a (constrained) optimal control problem. However,
under the simplifying assumptions that: 1) the vehicle travels
at a constant velocity; 2) the objective is to find the shortest
path; and 3) the environment is obstacle-free, the optimal
steering function admits an analytic solution and is given by
one of the so-called Reeds–Shepp curves [58], [59]. Indeed,
the availability of those Reeds–Shepp curves allows RRT� to
find obstacle-free paths [27]. Furthermore, it has been shown
that, as the number of samples goes to infinity, then RRT� is
indeed able to find the shortest-path solution [26].

While RRT� is often able to quickly find obstacle-free
paths, its classical implementations, which rely on the Reeds–
Shepp curves as steering functions are limited by two factors.
First, because the Reeds–Shepp curves are derived from a vehi-
cle model that assumes constant velocity, such RRT� methods
generally do not provide a velocity profile. Second, without
further modifications and for the same reason as above, RRT�

is not able to take into account the input rate constraints.
Recall that Hybrid A� also suffers from these two limitations,
and interpolating the results of Section V-E, we may conclude
that tracking a path generated by RRT� will be slower and
result in higher cost when compared with following a path
obtained by solving (15) and (18). We point out that, similar
to Hybrid A�, it is in principle possible to include both a
velocity profile and input/state rate constraints into RRT�

by augmenting the (reduced) state (X, Y, ϕ) with (v, δ, a).

5Roughly speaking, the steering function solves the boundary value problem
between the new sample and a node from the existing search tree, by taking
into account the nonholonomic vehicle dynamics.

This will, however, require sampling in higher dimensional
state space and finding new steering functions, both of which
can be computationally nontrivial. Indeed, the optimal steering
functions may not admit analytic formulations anymore and
require solving an optimal control problem instead to grow the
search tree [60]. As a result, the RRT� algorithms that pro-
vide velocity profiles and consider input/state rate constraints
may become considerably slower, and these modifications are
generally not made in practice.

We conclude this section by pointing out that the proposed
framework presents a unified approach toward motion plan-
ning for autonomous parking that, in a disciplined fashion,
is able to consider generic objective functions, vehicle models,
system constraints, and obstacle avoidance constraints. Numer-
ical simulations indicate that the proposed methods are able
to generate high-quality paths, which can easily be tracked by
simple path-following controllers. Finally, we notice that since
our approach takes into account the vehicle’s velocity, it is
able to explicitly plan a path as a function of time, allowing
time-varying obstacles to be naturally integrated into the path
planning process.

VI. CONCLUSION

In this article, we presented smooth and exact reformula-
tions for collision avoidance constraints for problems where
the controlled object and the obstacle can be represented
as the finite union of convex sets. We have shown that
nondifferentiable polytopic obstacle constraints can be dealt
with via dualization techniques to preserve differentiability,
allowing the use of gradient- and Hessian-based optimization
methods. The presented reformulation techniques are exact
and nonconservative and apply equally to point-mass and full-
dimensional controlled objects. Furthermore, in case collision-
free trajectories cannot be generated, our framework allows
us to find least-intrusive trajectories, measured in terms of
penetration.

Our numerical studies, performed on an autonomous car
parking example, indicate that, when appropriately initialized,
the proposed framework is robust, real-time feasible, and able
to generate dynamically feasible trajectories that satisfy the
system constraints. We note that the exact method to initialize
the numerical optimization algorithms is problem-dependent
and should be chosen depending on the system at hand.
Ongoing research focuses on appropriately warm starting the
discretization time Topt, as well as on the methods for further
speeding up computation times.

APPENDIX A: PROOF OF PROPOSITION 2

We need the following standard results from convex
analysis.

Lemma 1: Let C ⊂ Rn be a compact convex set.

1) Then, HC(z) := {x ∈ Rn : z�x ≤ maxy∈C y�z} is a
supporting half-space with normal vector z, and

C =
⋂

z : ‖z‖=1

HC(z) (22)

for any norm ‖ · ‖.
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2) Let ∂HC(z) := {x ∈ Rn : z�x = maxy∈C y�z} be the
supporting hyperplane with normal vector z. Then, for
any x̄ ∈ C, it holds that

dist(x̄, ∂HC(z)) = maxy∈C{y�z} − z� x̄

‖z‖∗
(23)

where dist(·, ·) is defined as in (8a).
Proof of Proposition 2: First observe that pen(E(x), O) =

dist(E(x), O�), where O� ⊂ Rn denotes the complement of
the set O. Using this relationship and recalling the defini-
tion of dist(·, ·), it follows from (22) that pen(E(x), O) =
inf{z : ‖z‖∗=1} dist(E(x), ∂HO(z)), where we exploited the fact
that (22) holds for any norm6 and hence also the dual norm
‖ · ‖∗. Furthermore, it follows from (23) that, since ‖z‖∗ = 1,
dist(E(x), ∂HO(z)) = maxy∈O{y�z} − z�E(x), which allows
us to rewrite the penetration function as pen(E(x), O) =
inf{z : ‖z‖∗=1}{maxy∈O{y�z} − z�E(x)}. To see that the min-
max problem is equivalent to (11), we use strong duality of
convex optimization to reformulate the inner maximization
problem as maxy∈O{y�z} = minλ{b�λ : A�λ = z, λ �K∗
0}. Hence, pen(E(x), O) = infz,λ{b�λ − z�E(x) : ‖z‖∗ =
1, A�λ = z, λ �K∗ 0} = infλ{(b − AE(x))�λ : ‖A�λ‖∗ =
1, λ �K∗ 0}. Finally, we have pen(E(x), O) < pmax ⇔
infλ{(b − AE(x))�λ : ‖A�λ‖∗ = 1, λ �K∗ 0} < pmax ⇔
λ �K∗ 0 : (b− A E(x))�λ < pmax, which concludes the proof.

APPENDIX B: SKETCH OF PATH-FOLLOWING CONTROLLER

Following the literature, the path follower consists of a
longitudinal controller and a lateral controller [57]. The lon-
gitudinal controller is a simple proportional controller of the
form a = P(v−vref(s))+aff(s), where s is the progress along a
given “reference” path, vref is the reference velocity, and aff(s)
is a feedforward term provided by the reference trajectory.
To design the lateral controller, a change of coordinate from
the global to the local error state, with respect to the reference
path, is performed (“curvilinear abscissa”). Let e = (n, α) be
the resulting error state, where n is the orthogonal distance to
the reference path and α is the angular error; see [57, Ch. 2.5]
for details. Similar to the longitudinal controller, the lateral
controller consists of a feedback term and a feedforward term
δff(s), which depends on the curvature of the path. Upon
linearization, the error dynamics takes the form

ė =
[

0 v
0 0

]
e +

[
0
v

L

]
δ, δ = −K e + δff(s).

The above-mentioned system is discretized with a sampling
time of 50 ms, and a standard LQR-controller is used to
stabilize the system. A sequential linearization approach is
taken to deal with the velocity term v in the above-mentioned
system matrix.
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